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The article starts a series of investigations of generalized linear thermodynamic systems with memory. We 

formulate the basic tenets of the nonequilibrium thermodynamic theory of such systems. The second law is 

given in the form of a postulate generalizing the classical formulation that requires that the integral of reduced 

heat have a fixed sign in any cyclic process. We derived some auxiliary results necessary for the main theorem 

to be proved. 

Introduction. Contemporary thermodynamics is distinguished by a wide variety of schools, approaches, and 

methods [1212 ]. They differ not only in the objects of investigation, initial premises, levels of mathematical rigor, 

but also in the objectives placed before the thermodynamic theory. According to the tradition going back to the 

classical thermodynamics of irreversible processes of the Brussels school [1, 2 ], the aim of the thermodynamic 

theory of continuum is the construction of the field equations of a continuous medium, and this aim is retained in 

many modern trends of thermodynamics [4, 7, 8 ]. Actually, such a construction consists only in the derivation of 

material, or, in the present-day language, constitutive equations, which, together with the equations for the laws 
of conservation in a local form, form a closed system of field equations. However, any specific system of equations 

describes only a particular medium (more precisely, a narrow class of media) and therefore cannot be obtained 

only by the methods of such a general theory as thermodynamics. This means that to accomplish a specified task 

one is bound to use assumptions lying outside the scope of pure thermodynamics and narrowing the field of the 

applicability of the theory. This is one of the reasons why such a statement of the problem permits one to consider 

a comparatively narrow class of thermodynamic systems. 

The trend in the thermodynamic theory, being intensely developed in the last decade and known as 

"rational thermodynamics" [9-12 ], does not place before the theory such a far-reaching objective which would have 

restricted validity. Its task is to isolate a subclass of thermodynamically admissible equations from a vast class of 

constitutive equations tha twere  described by some means or other. It turned out that the constructive role of 

thermodynamic principles, consisting in an appreciable restriction of the possible choice of constitutive equations, 

is extremely great - up to a reduction in the number of such equations. The task of removing such an arbitrariness 

that remains after the use of thermodynamic principles with a view of specifying constitutive equations remains 
outside the scope of thermodynamics and is solved either experimentally or within the confines of other theories 

(e.g., statistical). Owing to a rigorous formalization of the concepts used, precise formulation of the original 

premises, high degree of axiomatization, and to the use of the present-day mathematical methods, this trend has 

demonstrated its productivity in application to the most diversified thermodynamic systems, including those which 

could not be considered on the basis of former thermodynamic approaches, for example, to systems with memory. 
Methods were developed for investigating the properties of constitutive equations, resulting from thermodynamic 
limitations, for the most diversified thermodynamic systems, including the properties of relaxational functions of 
media with memory [13-20 ]. Owing to the variety of the conclusions of the general theory the possibility appeared 

for testing different versions of the initial postulates and for selecting the most adequate of them by comparing the 
conclusions of the theory with experiment. This stimulating factor was the reason for a deep analysis of the 
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foundations of the theory and investigations of its versions based on different formulations of the second law 

[21-27]. 

However, at the initial stage of the development this trend suffered from a drawback residing in the fact 

�9 that in addition to the constitutive equations postulated in the theory for closing conservation laws, it was necessary 

to postulate still another constitutive equation for the thermodynamic potential (entropy, free energy, etc.), which 

was a prerequisite for the formulation of the second law. And while for the first type of equations there are 

justification s outside the thermodynamics (for example, from experiment or from the statistical theory), the 

constitutive equation for the nonequilibrium thermodynamic potential is unknown in the majority of cases, except 

for the simplest thermodynamic systems. And though, notwithstanding this, it was possible to obtain conclusions 

independent of the specific form of the thermodynamic potential, nevertheless, the absence of its determination 

should be considered a drawback of the theory. 

In 1974 Coleman and Owen published their work [27] in which they developed some of the earlier ideas 

of Day [12 ] and worked out an extremely general thermodynamic theory using the principle of a fixed sign for a 

thermodynamic action in closed processes for the formulation of the second law. In this case the thermodynamic 

potential is not incorporated into the set of primary concepts and is a quantity, which is determined and constructed 

in the theory. Apart from overcoming the above deficiency, this approach also holds promise because it makes it 

possible to construct a constitutive equation for the thermodynamic potential that contains practically important 

information; the derivation of this equation can be considered as one of objectives of the thermodynamic theory. 

However, before getting down to the solution of this urgent problem, it is necessary to find out what conditions 

should be satisfied by a thermodynamic system for the fulfillment of the initial postulates that result in the existence 

of the thermodynamic potential. In other words, it is necessary to find the necessary and sufficient conditions for 

satisfying the second law in this formulation. 

In the present study we solve this range of problems for generalized (in the sense in which the systems 

are introduced in [28 ]) linear thermodynamic systems with memory that model the most diversified physical 

systems but nevertheless relate to a certain specific realization of still more general Coleman-Owen systems. 

1. Notation and Definitions. Let R and R + be sets of real and real nonnegative numbers; S is the 

configuration space representing a linear finite-dimensional vector space of the elements a, r ,  7 -.. with scalar 

product <- >, norm I �9 I, and zero element 0; L(S) is the vector space of all the linear mappings A, B, C . . . .  of the 

space S into itself with the norm 

I[a]l =sup{ IAal:aeS,  lal = 1 } ,  A e L ( S )  (1.1) 

and zero element 0. 
For any A E L(S) the transformation in L(S)conjugate to it (or the transposed A) is denoted by A x and 

is defined by 

( a ,  A f l ) = ( f l ,  A •  for all a , f l E S .  (1.2) 

The function of time t: R -> S, called the configurational trajectory of the system, is a continuous function 

bounded on each finite interval, with a bounded derivative on finite intervals; for this function there is such to, that 

eft) = e0 for all t < to (to is a fixed element from S). 
The configurational history of the system up to the moment t is the function Et: R + -~ S, defined as follows: 

t (1.3) 
( s )  = e ( t  - s ) .  

The differential configurational history up to the moment t is the function kt: R + --, S: 

�9 t d t d ( 1 . 4 )  
( s )  = ( s )  = - ( t  - s ) .  

The Hilbert space 36 of piecewise-continuous bounded functions f: R + -, S with a compact carrier and a 

finite norm 
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) 1 / 2  

II f II = ~ I/(012 ~ (s) as (1.5) 
o 

will be called a space of differential histories. In Eq. (1.5) ~ > 0 is the influence function. It is assumed to be 

continuous, integrable on R +, vanishing nowhere, and having the property 

lira ~ (s) < Qo. (1.6) 
,-,oo ~ ( s +  73 

The state A is the pair A = {a,  f} ,  where a ~ S, f ~ 36, and the set of all of such pairs with the norm 

I1" II 

II A IIs = (1~12 + II f 112) 1/2 (1.7) 

forms the space of states 36. 

For a specified configurational trajectory e(.)  and arbitrary moment t the state of the system at the moment 

t is defined as 

At= {e (t), (1.8) 

The equilibrium state is A + = {a, 0+}, where a ~ S, 0 + ~ X and O+(s) = 0 for all s E R +. 

The relaxation function R: R + --, L(S) is a continuous twice-differentiable function such that 

f I [R (s)]l s ds < 
0 

(1.9) 

and, consequently: 

(1.10) 
R ( o o ) = 0  and [ [ R ( s ) ] [  d s <  ~ .  

0 

Associated with the relaxation function is the linear function of state, i.e., the constitutive functional of 

generalized forces a: $ --> S, which for the state A = {a, f} is defined as 

~ (A)  = ~ ( a ,  f )  = a 0 + E a  + 7 R ( s ) f ( s )  ds .  (1.11) 
0 

For each configurational trajectory of the system e(t), with the help of the functional (1.11) it is possible 

to unambiguously determine the trajectory of the generalized forces at: R --> S: 

a~ (t) = 8 ( A  t) = 8 ( e  ( t) ,e  t) = a 0 + Ee (t) + f R ( s )  e (t - s) ds .  (1.12) 
0 

The thermodynamic trajectory is the pair {eft), at(O} consisting of the configurational trajectory and the 

trajectory corresponding to it, i.e., ae: R --> S of the generalized forces. 

The process of duration T(T  > 0) is the function h: (0, T] ~ S, bounded and piecewise-continuous, with 
which the transformation P~': $ --> $ is associated in the space of states defined as follows: for any A = {a, f} ~ S 

= { a ) } ,  (1.13) 

where 

a(h ) = ct + h i (T) ,  (1.14) 

f (h ) (S )= f ( s - T )  for s E  [T,  oo); (1.15) 

h (T - s) for s ~ [0,  T) ; 
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h i (t) = ) h  (s) ds,  (1.16) 
0 

P~" is the transformation induced by the process h. We state that the process h transforms the system from the 

initial state A into the final state P~'A. 

The set of all the processes and the set of the processes of duration T will be denoted by ~' and ~T, 

respectively. The process u(s) = 0 for all S E (0, T) will be called a fixed process of duration T. 

It can be easily shown that the transformation P~" associated with the process h takes the system from the 
state at the moment t A t=  {e(t), et}, corresponding to the deformational trajectory e(r), to the state at the moment 

t+T, corresponding to the deformational trajectory eh(7;), which is defined on (-0% t+T) as follows: 

= I  e(r)  for v_< t ,  (1.I7) (0 E h 
e ( t ) + h  i ( r - t )  for r ~ ( t ,  T + t  ]. 

It can be shown that due to the above assumptions, for any process h the transformation P~ associated with 

it is continuous in & 

The composition of the processes hl of duration T1 and h2 of duration 7"2 is the process hi ~ h2 of duration 

T1 + 7"2 defined in the following way: 

= I h1(3) for r E ( 0 ,  T 1], (1.18) 
hlOh 2 

h 2 ( r - T 1 )  for r ~ ( T  1, T 1 + T 2 ) .  

We can determine the composition h2 o hi in a similar way. It can be easily shown that 

T 1 + T 2 T 2 T 1 

Phl~ 2 A = Ph2 Phi A .  

We can also determine for any ~: < T the reduction of the process of duration T on the interval (0, 1:) by 

contracting the region of the determination of the process h on (0, r); this will be the process of duration r. The 

transformation pT associated with it will be determined appropriately. 

In concluding this section, we introduce the following notation. Let S* be the linear vector space above the 
field of complex numbers such that its contraction on the field of real numbers coincides with S; then L*(S*) is the 

vector space of linear mappings from S* into S*. For any element a from S* the complex conjugate is denoted by 

a*. If R: R + --> L(S)o is the relaxation function, then r: R + ~ R +, F." R + -* R +, 7: R + -~ R + and the expanded 
relaxation function R: R ~ L(S) are defined by the relations 

r(s) = I tR (s)][ , (1.19) 

t-(s) = s u p ( r O  l) [ 2E  [s, ~ ) } ,  (1.20) 

oo 

7 (s) = f r (2) d2, (1.21) 
$ 

for s E ( 0 ,  oo), 
R (s) R • (1.22) 

k ( s ) =  ( R ( 0 ) +  (0))/2 for s = 0 ,  

R •  for - s E ( 0 ,  oo). 

The operations on the functions in (1.21) and (1.22) can be used once more; for example, ~is understood 
to represent 

o o  

~(s) = f F(A) dA. 
$ 

(1.2a) 
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It is obvious that the functions generated by operations (1.21) and (1.22) are monotonous by definition. 

We will use the symbol RL for the Laplace transformation of R, R c for the Fourier cosine-transformation 
o o 

of R, R s for the Fourier sine-transformation of R, and RE for the Fourier transformation of R: 

RL (p) = 7 R (s) e -so ds , (1.24) 
o 

R c (o~) = 7 R (s) cos (ws) ds ,  (1.25) 
0 

R s (co) = 7 R (s) sin (cos) ds ,  (1.26) 
o 

oo 

RE (co) = f k (s) e - ~ s  d s ,  (1.27) 
~ 0 0  

where RL: C --, L*(S*), Rc: R + -~ L(S) ,  Rs: R + --" L(S),  flE: R --, L*(S*). 

Thermodynamic Postulates and Corollaries.. The action (or thermodynamic action) performed by the 

process h of duration T from the state A is the function a: ~ • R, which is defined as follows: 

T 
= f ( cr (Ph A ) ,  h ( r ) )  > dr ,  a (A,  h) ,-, r (2.1) 

0 

where P~ is the transformation associated with the reduction of the process h onto the interval (0, ~). It is evident 

that the action is continuous in S at a fixed h and, moreover, it is additive on the composition of the two processes 

hi and h2 of duration T1 and T2 in the sense that 

a ( A  hl~ a ( h  hi) + a ( P ; i  , = , A ,  h 2 ) =  

T 1 T 2 
= f ( 3 (P]2 A),  h 1 (z)) dr + f ( 3 (P]2 P ~  A),  h 1 (r))  dr .  (2.2) 

o o 

In specific physical applications of this theory, there is an integral of reduced heat for the thermodynamic 

action. All the concepts and definitions formulated above is a certain, more specific realization of the abstract 

mathematical theory of Coleman-Owen's thermodynamic systems [27 ], so that there is quite a good correspondence 

between the basic concepts and postulates of the both theories. 
We shall go over to the formulation of the postulates of the thermodynamic theory. 

The postulate that expresses the second law of thermodynamics in the Coleman-Owen sense [27 ] will be 

formulated as follows. 
Pl.  At any initial state A E $ the action a has the following property: for any C > 0 there is such 6 > 0 such 

that if h E ~T and 

II A - AIIs < (2.3) 

then 

a (A, h) > - G. (2.4) 

Speaking nonstrictly, this postulate means that if a certain process takes a system to a rather small 
neighborhood of the initial state, then the action performed in this process will be nonnegative with any high 
accuracy. This statement is a generalization and a strict mathematical formalization of the formulation of the second 
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law used in classical thermodynamics requiring nonnegativeness of the reduced heat integral in a cyclic process 

[1]. 

We shall consider that the relaxation function R is coordinated with the influence function ~ if there is 

M > 0 such that 

r - (s )_<M~(s)  for all s E R  +.  (2.5) 

In the theory suggested, between the relaxation function and the influence function a certain interrelation 

is assumed which is expressed in the following postulate, which, without any additional reservations, will be 

considered satisfied throughout in what follows. 

P2. The influence function ~ is coordinated with the relaxation function R. 

At first glance this postulate has no relation to thermodynamics and can be considered as a technical 

assumption in the mathematical apparatus used. In actual fact it establishes a certain interrelation between the 

postulated constitutive equation (1.11), whose representative is R, and the thermodynamic potential, which is 

constructed in the theory and which possesses, as will be seen from what follows, certain properties of continuity 

in the space $, whose representative is ~. For this reason, this postulate is included into a series of thermodynamic 

potentials. 
The basic corollary of the second law of thermodynamics is the existence of a thermodynamic potential 

and the fulfillment of the Clausius-Duhem inequality, which forms the content of the next theorem(this  is an 

analog of Theorem 3.3 of [27] for the class of thermodynamic systems considered). 

T h e o r e m 1. There is a function of state ~: ~ --, R (thermodynamic potential), definite and continuous 

on S, so that for  any A E S and any h E ~ the following inequality is satisfied: 

~2 (Ph A) + ~/(A) _< a (A, h). (2.6) 

The theorem is proved on the basis of arguments similar to those used in [27 ] with only one small modification: 

in [27 ] a weaker version of PI is used and only the upper semicontinuity of the potential ~/is proved. The upper 

semicontinuity in the state A means the following: for any C > 0 there exists 6 > 0 such that from 

it follows that 

A ' E  g and II A - A'H s < 6 (2.7) 

t~ (A') - ~ (A) < e .  (2.8) 

Since here in PI the property of action a indicated in it was assumed to be satisfied in any state, then ~/is upper 

semicontinuous and also in state A; therefore there is 6 > 0 such that (2.7) yields not only (2.8), but also 

- (A' )  + (A)  < e .  

A , 

From this the continuity of-~0 m any state follows. 
This result is fundamentally important, since it demonstrates the interrelation between the formulation of 

the second law used here and other well-known formulations. Its applications are also not unimportant; for example, 

it can be used to solve in principle the urgent problem of finding the dissipation function (functional) for media 
with memory from the well-known constitutive equations for the internal energy and stress tensor, as well as 

deriving thermodynamic restrictions of constitutive equations. 

The proof of this theorem is constructive, i.e., it contains the definition of the functional ~. According to 

[27 ], it is determined accurate to its value in a certain surveyed (for example, equilibrium) state A~- and is specified 

as follows: 

O(A) = s u p { i n f { a ( A ~ ,  h ) [ h e  ~', I[ PhAg-A[[,<e} [ C>0}. (2.9) 
However, in [29 ] it is shown that for many thermodynamic systems there exists an infinite set of potentials 

among which we may distinguish the maximum and minimum ones. In view of this, there arises the problem of 

obtaining explicit expressions for these potentials in the case of specific thermodynamic system and elucidating 
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their physical meaning. We shall refer to this problem in the last article of the series. But first we shall attempt to 

find the necessary and sufficient conditions that must be satisfied by the constitutive equation (1.11) in order for 

the second law to be fulfilled in the form of P2. This means that for the given equation we shall find a full set of 

thermodynamic restrictions that follows from the second law. 

To prove the basic theorem containing these conditions (this will be given in the next article), we will need 

certain auxiliary purely mathematical statements that form the content of the forthcoming lemmas. 

L e m m a 1. The following conditions are equivalent: 

i) for any locally quadratically integrable function g: R + -~ S and any T > 0 the relaxation function R 

satisfies the inequality 

T t 
f f ( g ( t ) ,  R ( t - s )  g ( s ) ) d s d t > _ O ;  (2.10a) 
o o 

it) for any co E R and any a, fl E S* the expanded relaxation function R (determined in (1.22)  satisfies 

the inequality 

( a*,  RF (co) a ) >__ 0 ; (2.106) 

iii) for any I~ E R +, e9 ~ R, a, fl E S* the relaxation function R satisfies the inequality 

( a*,  RL (P + Ro) + R L (u - /zo) a ) >_ 0.  (2.10B) 

L e m m a 2. I f  the relaxation function R satisfies the conditions of lemma I, then it satisfies the inequality 

T t  o o T t  
f f ( g ( t ) ,  R ( t - s )  g ( s ) ) d s d t + ~  f f ( g ( t ) ,  R ( t - s + k T )  g ( s ) ) d s d t > _ O  (2.11) 
0 0 k=10 0 

for any locally quadratically integrable g: R + --, S and any T > O. 

The following two lemmas result from PI. 

L e m m a 3. There exists M1 > 0 such that for all s >- 0 

7(s) <_ ml~ (s). (2,12) 

L e m m a 4. For any T > 0 there exists M(t ) > 0 such that for all s >_ T 

7 (s - T) _< M(T)~ (s) .  (2.13) 

The proofs of all the lemmas are given in the Appendix. 

A P P E N D I X  

P r o o f o f L e m m a 1. The equivalence between i) and iii) is an actually well-known result in the 

theory of linear dynamic systems [30 ]. The condition iii) coincides with the statement that R L is a positive real 

function (in the terminology of [30 ]), and the condition i) is equivalent to the requirement of the passive state for 

a dynamic input-output type system representable by the pulse function of response R with input k and output a 
(coupled, as in (1.12), on the condition that a 0 = 0, E = 0). According to Theorem 1 from [30], these conditions 

are equivalent. 
To complete the proof of the lemma, it is necessary to prove the equivalence between it) and iii). Assuming 

p = 0 in (2.10c) and using definition (1.23), we can easily show that it) follows from iii). Conversely, let us assume 

that it) is satisfied and, consequently, inequality (2.10b) is valid. The left-hand side of inequality (2.10c) can be 

represented in the form 

( ~ * ,  f R (s) e -~'~ e -~~ ds  + R • (s) e -~'~ e ~~ ds  ~ ) = ( ~ * ,  ~ (s) ~ ) ~, (s) e -~~ d s ,  (A.1) 
0 0 - ~  
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where 

~o (s) = e - :  Isl 

The Fourier transform of this function is 

(A. 2) 

~'F (co) = 2 2" 
tz +e )  

(A. 3) 

Since in iii) it was assumed that/~ _> 0, from (A.3) we have 

~o F (~o) ___ 0 
for all w E R. 

Using the Borel theorem concerning the convolution, the r ight-hand side of (2.10c) 

transformed to 

( ~* ,  RL O~ + ion) + a ~  O~ - ion) ~ ) = f ( ~* ,  Rp (o~ - o)o) ~ ) ~o r (COo) d % .  

(A.4) 

in (A.1) can be 

(A.5) 

Now, iii) follows directly from (A.5) by virtue of it) and (A.4), as was to be shown. 

2. P r o o f o f L e m m a 2. With the aid of the function g from (2.11) we define the function gT with 

the carrier limited on [0, T ] and the function g(T), periodic on R, with the period T in the following manner: 

( s ) = I  g(s)  for s E  [0, T ] ,  (A.6) 
gT 

t 0 for the remaining s ;  

g ( T ) ( s + k T ) = g ( s )  for s E  [0, s ) ,  k = 0 ,  ___ 1, __+2 .... (A.7) 

With the help of g(T) and 11 introduced into (1.22), the left-hand side of inequality (2.11), which will be 

denoted by I, can be transformed as follows: 

T t  ~ T T  
I = f f ( g (t) , R (t - s) g (s) ) ds dt + y f ( g (t) , R (t - s + kT) g (s) ) ds dt = 

0 0 k = l  0 0 

1 ( T  t T T ' R  x 
= ~ f f ( g (0 ,  R (t - s) g (s))  ds dt + f f ( g (t) (s - t) g (s))  ds dt + 

O0 O t  

+ f ( g ( T ) ( O ,  R ( t - s )  g ( s ) ) d s d t +  f f ( g ( O ,  R ( t - s )  g (T ) (S ) )dsd t  = 
T 0 0 -r162 

1 
= g f J  g(~ (0,  ~ (t - s) g (~) as) at. 

- 0 

Let us represent the function R in terms of its Fourier transform (1.27): 

(A.8) 

1 7 ~ ei~ f~ (s) = ~ RF (~o) d o ,  (A.9) 

and the periodic function g(T) in terms of its Fourier series: 

g(T)(0 = ~ ckexp t , 
(A.10) 

�9 1 T ( i 2 : r k )  
c k = c _  k = - ~  f g ( s )  exp ~ s  ds.  

0 
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Substituting (A.9), (A.10) into (A.8), we obtain 

l ~ oo ( _ ~ _ )  ~ ( ~  o ei~o(t_s) ) 
I = ~ ( ~ c k exp i k t , R F(09) dw g (s) ds ) 

-oo k = - o o  0 
dt  = 

= T~ f ( ~ ck exp ---T-- t , RF (09) f g (s) e -i~ as a09 ) a t  = 
- o o  k=-oo - ~  0 

- 4~ ( ~] ck exp t , RF (09) gTF 09 e d09 ) d t ,  

where g(TF) is the Fourier-transform of the function gT introduced in (A.6). 
O 

The change of the order of integration used in (A.11) is valid, since the function Rr(a~)g(s)e  -z~ is 
o 

absolutely integrable on [0, T ] • R by virtue of the absolute integrability of Re, which is obvious, since R was 
assumed to be continuously twice-differenfiable. The series in the last term in (A. 11) can be integrated term by 
term, since it represents the expansion of a bounded function. Performing this integration, we obtain 

I = ~ ~_, ( cg , R F (co) gTF (w) exp i ---T--- + 09 t doo at ) = 
k _ ~ .  _ _  O0 - - 0 0  ~ 0 0  

= 4---~ ( g T r ( 0 9 ) ,  RF (09) ck)exp i --T"- +c~  t a w d t .  
k ~ _ o o  ~ o o  - o o  

With the use of the obvious relations 

o X o . 

RF (09) = R F ( - - w )  and gTF(--09)  = gTF(09) 

Eq. (A.11a) can be reduced to 

I = ~ ( gTF (r R r (09) c k ) exp i T - 09 t d09 a t .  

Recall now the definition and properties of the Fourier integral [31 ]: if the function T is absolutely 

integrable on R and satisfies the Dini condition, then the following relation is satisfied: 

_ =  - =  ~ (v) exp ( -  i (v - x) ,~) av da = ~ ( x ) .  

The function <g~rF(CO), RF(09)Ck> in (A.12) is absolutely integrable on R by virtue of the absolute 
integrability of ~tr and boundedness of grF. Moreover, g~-p and R~ are continuous and differentiable. This means 
that it satisfies the Dini condition, and we must use (A.13) in (A.12). As a result we have 

1 ~ �9 (2~k) ~ (__~) (A.14) 

We note that according to (A.IO) 

so that we can rewrite (A.14) as 

(A. 15) 

. o  

z = ~ -  (ck  , RF - -  c k ) .  
k ~ - o o  

According to the condition it) of Lemma 1, all the terms of the series in (A.16) are nonnegafive and, 
consequently, Lemma 2 has been proved. 
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P r o o f  o f  L e m m a  3. As is stated inP2,  there is M > 0 such that 

7(s) < M ~ ( s )  for all s E R  +.  (A. 17) 

Let us use the definition of the function ~(1.23) and the fact that, according to the definition of (1.20), 
the function F'is always positive and monotonously decreasing: 

s+z 0 s+~ 0 
7(s) = ~ 7(~) d~ = f 7(~) da + ~ 7(~) d~ _> f 7(~) d~ _> ~o 7(s + ~o)- 

s s s + v  0 s 

(A.18) 

Here T O > 0 is an arbitrarily selected fixed number. Let us introduce the designation 

def { ~(S) (0 oo)} (A.19) 
Mr0 = Sup ~ ( s + v 0 )  l s e  , . 

According to the properties of the influence function, specified in Section 1, this supremum exists and is 

finite. It is evident that 

(s)_<M~0~(s+Z-o) for all s E R  +. (A. 20) 

Combining (A.17), (A.18), and (A.20), we obtain 

M Mv 0 
7( s+T0) -<  TO ~ ( s + ~ 0 )  for all s E R  + ,  

or in alternative form 

MM, o 
7"(s) < r0 ~ (s) for all s E [Zo, oo). (A.21) 

Using the notation 

we can write 

def { ~-~--(ff-)- I } (A.22) 
m~o = sup ~(s) l S ~ [ 0 ' T ~  , 

7"(s)_<mr0~(s) for all s ~  [0, To). 
(A.23) 

Using the notation 

we can combine (A.21) and (A.23): 

def ( M M r 0 )  (A.24) 
M 1 = max rrt,0, T0 

F'(s)<_M l~(s) for all s E  [0, oo), 

as was to be shown. 
P r o o f o f L e m m a 4. Since by virtue of definitions (1.19), (1.20) 

r ( s ) - 7 " ( s )  for all s E R  +,  (A. 25) 

the same inequality is also valid for  the integrals of these functions (see designations (1.21), (1.23)): 

r ( s )_<~(s )  for all s E R  +.  (A. 26) 
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For any T > 0 from (A.20) we have 

(s) < M T ~ (s + 7") for all s E R + . (A. 27) 

Substituting (1.26) and (1.27) into (1.17) and introducing a new variable ~7 -- s+T, we have 

r - T)  _< : 4  M T (T), 

and this is equivalent to (2.13) with M(T) = MMT, as was to be shown. 

This work was financed by the Fund for Fundamental Investigations of the Republic of Belarus (project 
T20-359). 
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